Modeling Debt Solving For Debt IRR In Continuous-Time

Gary Schurman MBE, CFA

March, 2023

In the white paper **Modeling Debt - Solving For Debt IRR In Discrete-Time** we calculated a credit spread in discrete-time. In this white paper we will calculate a credit spread in continuous-time. To that end we will work through the following hypothetical problem from the discrete-time white paper... [2]

Our Hypothetical Problem

We are given the following model parameters...

Table 1: Model Parameters

Symbol	Description	Value
D_0	Debt principal balance at time zero $(\$)$	100,000.00
D_T	Debt principal balance at time T (\$)	75,000.00
G	Cost of the guarantee (paid by the borrower) (\$)	9,500.00
R	Annual contractual interest rate $(\%)$	6.00
K	Annual risk-adjusted discount rate $(\%)$	6.50
T	Debt term in years $(\#)$	5.00

Our task is to answer the following questions...

Question 1: What is the market value of debt at time zero?

Question 2: What is the IRR on the debt excluding the guarantee?

Question 3: What is the IRR on the debt including the guarantee?

Question 4: What is the credit spread on the debt?

Debt Valuation Equations

We will define the variable κ to be the continuous-time risk-adjusted discount rate. Using the data in Table 1 above, the equation for the discount rate is...

$$\kappa = \ln(1+K) \tag{1}$$

We will define the variable ϕ to be the continuous-time contractual debt interest rate. Using the data in Table 1 above, the equation for the contractual debt interest rate is...

$$\phi = \ln(1+R) \tag{2}$$

We will define the variable Δ to be the continuous-time debt service payment factor. Using Equation (2) above and using the data in Table 1 above, the equation for the debt service payment factor is...

if...
$$D_T = D_0 \operatorname{Exp}\left\{-\lambda T\right\}$$
 ...then... $\lambda = -\ln\left(\frac{D_T}{D_0}\right) / T$...such that... $\Delta = \lambda + \phi$ (3)

Using Equations (2) and (3) above, the equation for debt balance at time $t \leq T$ is...

$$D_t = D_0 \operatorname{Exp}\left\{ \left(\phi - \Delta \right) t \right\}$$
(4)

We will define the variable $C_{0,T}$ to be cumulative cash flow received by the lender over the time interval [0,T]. Using Equations (2), (3) and (4) above, the equation for cumulative cash flow is...

$$C_{0,T} = \int_{0}^{T} \Delta D_t \,\delta t + D_T = \Delta D_0 \int_{0}^{T} \operatorname{Exp}\left\{\left(\phi - \Delta\right)t\right\} \delta t + D_T \tag{5}$$

We will define the variable V_0 to be the present value of lender cash flow over the time interval [0, T]. Using Equations (1) and (5) above, the equation for the present value of cash flow is...

$$V_0 = \Delta D_0 \int_0^T \operatorname{Exp}\left\{\left(\phi - \Delta\right)t\right\} \operatorname{Exp}\left\{-\kappa t\right\} \delta t + D_T \operatorname{Exp}\left\{-\kappa T\right\}$$
(6)

Using Appendix Equation (19) below, the solution to Equation (6) above is...

$$V_0 = \Delta D_0 \left[1 - \exp\left\{ \left(\phi - \Delta - \kappa \right) T \right\} \right] \left(\kappa + \Delta - \phi \right)^{-1} + D_T \exp\left\{ -\kappa T \right\}$$
(7)

We will make the following definitions...

$$A = 1 - \operatorname{Exp}\left\{\left(\phi - \Delta - \kappa\right)T\right\} \text{ ...and... } B = \left(\kappa + \Delta - \phi\right)^{-1} \text{ ...and... } C = \operatorname{Exp}\left\{-\kappa T\right\}$$
(8)

Using the definitions in Equation (8) above, we can rewrite Equation (7) above as...

$$V_0 = \Delta D_0 A B + D_T C \tag{9}$$

The derivative of Equation (9) with respect to the discount rate κ is...

$$\frac{\delta V_0}{\delta \kappa} = \Delta D_0 \left(\frac{\delta A}{\delta \kappa} B + \frac{\delta B}{\delta \kappa} A \right) + D_T \frac{\delta C}{\delta \kappa}$$
(10)

Using Appendix Equations (20), (21), and (22) below, the solutions to the derivatives in Equation (10) above are...

$$\frac{\delta A}{\delta \kappa} = T \operatorname{Exp}\left\{ \left(\phi - \Delta - \kappa \right) T \right\} \dots \operatorname{and} \dots \frac{\delta B}{\delta \kappa} = -\left(\kappa + \Delta - \phi \right)^{-2} \dots \operatorname{and} \dots \frac{\delta C}{\delta \kappa} = -T \operatorname{Exp}\left\{ -\kappa T \right\}$$
(11)

To solve for debt IRR we will use the Newton Raphson Method For Solving Non-Linear Equations. [1]

The Answers To Our Hypothetical Problem

Using Equation (1) above and the data in Table 1 above, the equation for the risk-adjusted discount rate is...

$$\kappa = \ln\left(1 + 0.0650\right) = 0.0630\tag{12}$$

Using Equations (2) above and the data in Table 1 above, the equation for the contractual interest rate is...

$$\phi = \ln\left(1 + 0.0600\right) = 0.0583\tag{13}$$

Using Equations (3) above and the data in Table 1 above, the equation for the debt service rate is...

$$\lambda = -\ln\left(\frac{75,000}{100,000}\right) / 5.00 = 0.0575 \quad \dots \text{ such that} \dots \ \Delta = 0.0575 + 0.0583 = 0.1158 \tag{14}$$

Question 1: What is the market value of debt at time zero?

$$V_{0} = 0.1148 \times 100,000 \times \left[1 - \exp\left\{\left(0.0583 - 0.1158 - 0.0630\right) \times 5.00\right\}\right] \left(0.0630 + 0.1158 - 0.0583\right)^{-1} + 75,000 \times \exp\left\{-0.0630 \times 5.00\right\} = 98,232.67$$
(15)

Question 2: What is the IRR on the debt excluding the guarantee.

If we set the guess value of κ to Equation (12) above, and F(actual κ) = Debt principal at time zero, then the IRR on the debt via a Newton-Raphson methodology for solving non-linear equations is... [1]

Iteration	new κ	=	κ guess	$\mathrm{F}(\kappa)$	$F(\kappa \text{ guess})$	$dF(\kappa \text{ guess})$
1	0.06293	=	0.05827	$98,\!232.67$	100,000.00	-379,564.91
2	0.06297	=	0.06293	$98,\!232.67$	$98,\!251.13$	$-371,\!663.97$
3	0.06297	=	0.06297	$98,\!232.67$	$98,\!232.67$	$-371,\!580.62$
4	0.06297	=	0.06297	$98,\!232.67$	$98,\!232.67$	$-371,\!580.61$

Using the last entry in the table above, the annualized IRR on the debt excluding the guarantee is...

IRR excluding guarantee = Exp
$$\left\{ 0.06297 \right\} - 1 = 6.50\%$$
 (16)

Question 3: What is the IRR on the debt including the guarantee.

If we set the guess value of κ to Equation (12) above, and F(actual κ) = Debt principal at time zero minus the value of the guarantee, then the IRR on the debt via a Newton-Raphson methodology for solving non-linear equations is... [1]

Iteration	new κ	=	κ guess	$F(\kappa)$	$F(\kappa \text{ guess})$	$dF(\kappa \text{ guess})$
1	0.08795	=	0.05827	88,732.67	100,000.00	$-379,\!564.91$
2	0.09013	=	0.08795	88,732.67	$89,\!454.30$	$-332,\!059.27$
3	0.09014	=	0.09013	88,732.67	88,736.17	$-328,\!836.97$
4	0.09014	=	0.09014	88,732.67	88,732.67	-328,821.23

Using the last entry in the table above, the annualized IRR on the debt excluding the guarantee is...

IRR including guarantee =
$$\operatorname{Exp}\left\{0.09014\right\} - 1 = 9.43\%$$
 (17)

Question 4: What is the credit spread on the debt.

Using Equations (16) and (17) above the credit spread (spread to cover credit losses) on the debt is...

Credit spread =
$$9.43\% - 6.50\% = 2.93\%$$
 (18)

Appendix

A. The solution to the following integral is...

B. The solution to the following equation is...

$$A = \frac{\delta}{\delta\kappa} \left[1 - \exp\left\{ \left(\phi - \Delta - \kappa\right)T \right\} \right]$$
$$= 0 - -T \exp\left\{ \left(\phi - \Delta - \kappa\right)T \right\}$$
$$= T \exp\left\{ \left(\phi - \Delta - \kappa\right)T \right\}$$
(20)

C. The solution to the following equation is...

$$B = \frac{\delta}{\delta\kappa} \left(\kappa + \Delta - \phi \right)^{-1}$$
$$= -\left(\kappa + \Delta - \phi \right)^{-2}$$
(21)

D. The solution to the following equation is...

$$C = \frac{\delta}{\delta\kappa} \operatorname{Exp}\left\{-\kappa T\right\}$$
$$= -T \operatorname{Exp}\left\{-\kappa T\right\}$$
(22)

References

- [1] Gary Schurman, The Newton Raphson Method For Solving Non-Linear Equations, October, 2009.
- [2] Gary Schurman, Modeling Debt Solving For Debt IRR In Discrete-Time, March, 2023.