Modeling Debt Solving For Debt IRR In Continuous-Time

Gary Schurman MBE, CFA

March, 2023

In the white paper Modeling Debt - Solving For Debt IRR In Discrete-Time we calculated a credit spread in discrete-time. In this white paper we will calculate a credit spread in continuous-time. To that end we will work through the following hypothetical problem from the discrete-time white paper... [2]

Our Hypothetical Problem

We are given the following model parameters...

Table 1: Model Parameters

Symbol	Description	Value
D_{0}	Debt principal balance at time zero (\$)	$100,000.00$
D_{T}	Debt principal balance at time $T(\$)$	$75,000.00$
G	Cost of the guarantee (paid by the borrower) $(\$)$	$9,500.00$
R	Annual contractual interest rate (\%)	6.00
K	Annual risk-adjusted discount rate (\%)	6.50
T	Debt term in years (\#)	5.00

Our task is to answer the following questions...
Question 1: What is the market value of debt at time zero?
Question 2: What is the IRR on the debt excluding the guarantee?
Question 3: What is the IRR on the debt including the guarantee?
Question 4: What is the credit spread on the debt?

Debt Valuation Equations

We will define the variable κ to be the continuous-time risk-adjusted discount rate. Using the data in Table 1 above, the equation for the discount rate is...

$$
\begin{equation*}
\kappa=\ln (1+K) \tag{1}
\end{equation*}
$$

We will define the variable ϕ to be the continuous-time contractual debt interest rate. Using the data in Table 1 above, the equation for the contractual debt interest rate is...

$$
\begin{equation*}
\phi=\ln (1+R) \tag{2}
\end{equation*}
$$

We will define the variable Δ to be the continuous-time debt service payment factor. Using Equation (2) above and using the data in Table 1 above, the equation for the debt service payment factor is...

$$
\begin{equation*}
\text { if... } D_{T}=D_{0} \operatorname{Exp}\{-\lambda T\} \ldots \text {..then... } \lambda=-\ln \left(\frac{D_{T}}{D_{0}}\right) / T \quad \ldots \text { such that... } \Delta=\lambda+\phi \tag{3}
\end{equation*}
$$

Using Equations (2) and (3) above, the equation for debt balance at time $t \leq T$ is...

$$
\begin{equation*}
D_{t}=D_{0} \operatorname{Exp}\{(\phi-\Delta) t\} \tag{4}
\end{equation*}
$$

We will define the variable $C_{0, T}$ to be cumulative cash flow received by the lender over the time interval $[0, T]$. Using Equations (2), (3) and (4) above, the equation for cumulative cash flow is...

$$
\begin{equation*}
C_{0, T}=\int_{0}^{T} \Delta D_{t} \delta t+D_{T}=\Delta D_{0} \int_{0}^{T} \operatorname{Exp}\{(\phi-\Delta) t\} \delta t+D_{T} \tag{5}
\end{equation*}
$$

We will define the variable V_{0} to be the present value of lender cash flow over the time interval $[0, T]$. Using Equations (1) and (5) above, the equation for the present value of cash flow is...

$$
\begin{equation*}
V_{0}=\Delta D_{0} \int_{0}^{T} \operatorname{Exp}\{(\phi-\Delta) t\} \operatorname{Exp}\{-\kappa t\} \delta t+D_{T} \operatorname{Exp}\{-\kappa T\} \tag{6}
\end{equation*}
$$

Using Appendix Equation (19) below, the solution to Equation (6) above is...

$$
\begin{equation*}
V_{0}=\Delta D_{0}[1-\operatorname{Exp}\{(\phi-\Delta-\kappa) T\}](\kappa+\Delta-\phi)^{-1}+D_{T} \operatorname{Exp}\{-\kappa T\} \tag{7}
\end{equation*}
$$

We will make the following definitions...

$$
\begin{equation*}
A=1-\operatorname{Exp}\{(\phi-\Delta-\kappa) T\} \ldots \text { and... } B=(\kappa+\Delta-\phi)^{-1} \ldots \text { and... } C=\operatorname{Exp}\{-\kappa T\} \tag{8}
\end{equation*}
$$

Using the definitions in Equation (8) above, we can rewrite Equation (7) above as...

$$
\begin{equation*}
V_{0}=\Delta D_{0} A B+D_{T} C \tag{9}
\end{equation*}
$$

The derivative of Equation (9) with respect to the discount rate κ is...

$$
\begin{equation*}
\frac{\delta V_{0}}{\delta \kappa}=\Delta D_{0}\left(\frac{\delta A}{\delta \kappa} B+\frac{\delta B}{\delta \kappa} A\right)+D_{T} \frac{\delta C}{\delta \kappa} \tag{10}
\end{equation*}
$$

Using Appendix Equations (20), (21), and (22) below, the solutions to the derivatives in Equation (10) above are...

$$
\begin{equation*}
\frac{\delta A}{\delta \kappa}=T \operatorname{Exp}\{(\phi-\Delta-\kappa) T\} \ldots \text { and } \ldots \frac{\delta B}{\delta \kappa}=-(\kappa+\Delta-\phi)^{-2} \ldots \text { and... } \frac{\delta C}{\delta \kappa}=-T \operatorname{Exp}\{-\kappa T\} \tag{11}
\end{equation*}
$$

To solve for debt IRR we will use the Newton Raphson Method For Solving Non-Linear Equations. [1]

The Answers To Our Hypothetical Problem

Using Equation (1) above and the data in Table 1 above, the equation for the risk-adjusted discount rate is...

$$
\begin{equation*}
\kappa=\ln (1+0.0650)=0.0630 \tag{12}
\end{equation*}
$$

Using Equations (2) above and the data in Table 1 above, the equation for the contractual interest rate is...

$$
\begin{equation*}
\phi=\ln (1+0.0600)=0.0583 \tag{13}
\end{equation*}
$$

Using Equations (3) above and the data in Table 1 above, the equation for the debt service rate is...

$$
\begin{equation*}
\lambda=-\ln \left(\frac{75,000}{100,000}\right) / 5.00=0.0575 \quad \ldots \text { such that } \ldots \Delta=0.0575+0.0583=0.1158 \tag{14}
\end{equation*}
$$

Question 1: What is the market value of debt at time zero?

$$
\begin{align*}
V_{0} & =0.1148 \times 100,000 \times[1-\operatorname{Exp}\{(0.0583-0.1158-0.0630) \times 5.00\}](0.0630+0.1158-0.0583)^{-1} \\
& +75,000 \times \operatorname{Exp}\{-0.0630 \times 5.00\}=98,232.67 \tag{15}
\end{align*}
$$

Question 2: What is the IRR on the debt excluding the guarantee.

If we set the guess value of κ to Equation (12) above, and F (actual κ) $=$ Debt principal at time zero, then the IRR on the debt via a Newton-Raphson methodology for solving non-linear equations is... [1]

Iteration	new κ	$=\kappa$ guess	$\mathrm{F}(\kappa)$	$\mathrm{F}(\kappa$ guess $)$	$\mathrm{dF}(\kappa$ guess $)$	
1	0.06293	$=$	0.05827	$98,232.67$	$100,000.00$	$-379,564.91$
2	0.06297	$=$	0.06293	$98,232.67$	$98,251.13$	$-371,663.97$
3	0.06297	$=$	0.06297	$98,232.67$	$98,232.67$	$-371,580.62$
4	0.06297	$=$	0.06297	$98,232.67$	$98,232.67$	$-371,580.61$

Using the last entry in the table above, the annualized IRR on the debt excluding the guarantee is...

$$
\begin{equation*}
\text { IRR excluding guarantee }=\operatorname{Exp}\{0.06297\}-1=6.50 \% \tag{16}
\end{equation*}
$$

Question 3: What is the IRR on the debt including the guarantee.
If we set the guess value of κ to Equation (12) above, and F (actual κ) $=$ Debt principal at time zero minus the value of the guarantee, then the IRR on the debt via a Newton-Raphson methodology for solving non-linear equations is... [1]

Iteration	new κ	$=\kappa$ guess	$\mathrm{F}(\kappa)$	$\mathrm{F}(\kappa$ guess $)$	$\mathrm{dF}(\kappa$ guess $)$	
1	0.08795	$=$	0.05827	$88,732.67$	$100,000.00$	$-379,564.91$
2	0.09013	$=$	0.08795	$88,732.67$	$89,454.30$	$-332,059.27$
3	0.09014	$=$	0.09013	$88,732.67$	$88,736.17$	$-328,836.97$
4	0.09014	$=$	0.09014	$88,732.67$	$88,732.67$	$-328,821.23$

Using the last entry in the table above, the annualized IRR on the debt excluding the guarantee is...

$$
\begin{equation*}
\text { IRR including guarantee }=\operatorname{Exp}\{0.09014\}-1=9.43 \% \tag{17}
\end{equation*}
$$

Question 4: What is the credit spread on the debt.
Using Equations (16) and (17) above the credit spread (spread to cover credit losses) on the debt is...

$$
\begin{equation*}
\text { Credit spread }=9.43 \%-6.50 \%=2.93 \% \tag{18}
\end{equation*}
$$

Appendix

A. The solution to the following integral is...

$$
\begin{align*}
I & =\int_{0}^{T} \operatorname{Exp}\{(\phi-\Delta) t\} \operatorname{Exp}\{-\kappa t\} \delta t \\
& =\int_{0}^{T} \operatorname{Exp}\{(\phi-\Delta-\kappa) t\} \delta t \\
& =\frac{1}{\phi-\Delta-\kappa} \operatorname{Exp}\{(\phi-\Delta-\kappa) t\}\left[{ }_{0}^{T}\right. \\
& =\frac{1}{\phi-\Delta-\kappa}[\operatorname{Exp}\{(\phi-\Delta-\kappa) T\}-1] \\
& =[1-\operatorname{Exp}\{(\phi-\Delta-\kappa) T\}](\kappa+\Delta-\phi)^{-1} \tag{19}
\end{align*}
$$

B. The solution to the following equation is...

$$
\begin{align*}
A & =\frac{\delta}{\delta \kappa}[1-\operatorname{Exp}\{(\phi-\Delta-\kappa) T\} \\
& =0--T \operatorname{Exp}\{(\phi-\Delta-\kappa) T\} \\
& =T \operatorname{Exp}\{(\phi-\Delta-\kappa) T\} \tag{20}
\end{align*}
$$

C. The solution to the following equation is...

$$
\begin{align*}
B & =\frac{\delta}{\delta \kappa}(\kappa+\Delta-\phi)^{-1} \\
& =-(\kappa+\Delta-\phi)^{-2} \tag{21}
\end{align*}
$$

D. The solution to the following equation is...

$$
\begin{align*}
C & =\frac{\delta}{\delta \kappa} \operatorname{Exp}\{-\kappa T\} \\
& =-T \operatorname{Exp}\{-\kappa T\} \tag{22}
\end{align*}
$$

References

[1] Gary Schurman, The Newton Raphson Method For Solving Non-Linear Equations, October, 2009.
[2] Gary Schurman, Modeling Debt - Solving For Debt IRR In Discrete-Time, March, 2023.

